Generalized fuzzy linear programming for decision making under uncertainty: Feasibility of fuzzy solutions and solving approach
نویسندگان
چکیده
In this study, a generalized fuzzy linear programming (GFLP)method is developed for dealing with uncertainties expressed as fuzzy sets. The feasibility of fuzzy solutions of theGFLPproblem is investigated. A stepwise interactive algorithm (SIA) based on the idea of design of experiment is then advanced to solve the GFLP problem. This SIA method was implemented through (i) discretizing membership grade of fuzzy parameters into a finite number of a-cut levels, (ii) converting the GFLP model into an interval linear programming (ILP) submodel under every a-cut level, (iii) solving the ILP submodels through an interactive algorithm and obtaining the associated interval solutions, (iv) acquiring the membership functions of fuzzy solutions through statistical regression methods. A simple numerical example is then proposed to illustrate the solution process of the GFLP model through SIA. A comparison between the solutions obtained though SIA and Monte Carlo method is finally conducted to demonstrate the robustness of the SIA method. The results indicate that the membership functions for decision variables and objective function are reasonable and robust. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...
متن کاملA Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...
متن کاملA new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by using semi-infinite linear programing
In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...
متن کاملA New Balancing and Ranking Method based on Hesitant Fuzzy Sets for Solving Decision-making Problems under Uncertainty
The purpose of this paper is to extend a new balancing and ranking method to handle uncertainty for a multiple attribute analysis under a hesitant fuzzy environment. The presented hesitant fuzzy balancing and ranking (HF-BR) method does not require attributes’ weights through the process of multiple attribute decision making (MADM) under hesitant conditions. For the rating of possible alternati...
متن کاملModified FGP approach and MATLAB program for solving multi-level linear fractional programming problems
In this paper, we present modified fuzzy goal programming (FGP) approach and generalized MATLAB program for solving multi-level linear fractional programming problems (ML-LFPPs) based on with some major modifications in earlier FGP algorithms. In proposed modified FGP approach, solution preferences by the decision makers at each level are not considered and fuzzy goal for the decision vectors i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 241 شماره
صفحات -
تاریخ انتشار 2013